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ABSTRACT

* We consider the Euler equations for a perfect fluid in a flat-

bottomed canal in the time-dependent case. A formal expansion procedure

for small amplitude, long waves analogous to that of Friedrichs and Hyers

for solitary waves is developed and leads to the Korteweg-de Vries equa-

tion(KdV for short) for the lowest order term. The higher order terms in

the expansion satisfy the inhomogeneous version of the linearized KdV

equation.

Of particular interest to us are those solutions of the KdV equation

called N-solitons, which asymptotically separate into N travelling waves

with distinct speeds. Using certain facts about the linearized KdV

equation and some properties of the N-solitons, we prove that the next

term in this expansion can be uniquely specified by certain asymptotic

conditions and a symmetry requirement. This solution behaves like an

N-soliton; asymptotically, it separates into N travelling waves with the

same speeds and phases as those of the leading term.
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SIGNIFICANCE AND EXPLANATION

The Euler equations for fluid flow in a flat-bottomed canal may be

approximated, in the long wavelength, small amplitude limit, by the

Korteweg-de Vries equation (KdV for short). We study the nature of this

approximation and attempt to justify it mathematically. The Friedrichs

and Hyers proof [91 of the existence of the solitary wave provides such

a justification for travelling wave solutions of the Euler equations.

In fact, they gave a formal expansion procedure for the solution which

yields the (time-independent) KdV equation for the leading term.

in this paper, time dependent solutions of the Euler equations

are examined in the same long wavelength limit. A formal expansion

procedure analogous to that of Friedrichs and Hyers is developed, and

the full KdV equation is derived for the leading term. Choosing the

so-called N-soliton solution of the KdV equation, we seek solutions to

th- Fuler equations with similar properties. The N-solitons are non-

linear superpositions of N solitary waves with distinct speeds, and

thus, for large positive or negative times, they decouple into N

travelling waves. By analyzing the linearized KdV equation, we show

that with suitable boundary conditions and a symmetry condition, the next

term in the formal expansion is unique and resembles an N soliton. The /

effect of the first-order correction to the KdV equation is merely to/

altey the shape of the waves slightly; their speeds and phases remafn, ,

the same. / ./" 4 , ' \
/-ne this dt .

"at
Thi, rt.§;pon ;Ii] li t2 Vor i-he wording and views expressed in this deseriptiv
>Imniarv Iie'; with MIQ, and not with the author of this report. N



A JUSTIFICATION OF THE KdV APPROXIMATION

TO FIRST ORDER IN THE CASE OF N-SOLITCN WATER WAVES IN A CANAL

Robert L. Sachs

1. INTRODUCTION

The Korteweg-de Vries equation (KdV for short) was originally derived

in 1895 as an approximation for fluid flow in a flat-bottomed canal [14].

This non-linear evolution equation for a function of one space var-ible

has the rather remarkable property, discovered by Gardner, Greene, Kruskal,

and Miura [10], that it may be solved more or less exactly. In fact, a

Hamiltonian structure can be introduced and the KdV equation may be

regarded as a completely integrable Hamiltonian system. One very

interesting class of solutions is the set of so-called N-solitons.

These solutions behave, for large positive and negative times, like N

exponentially decreasing 'bumps' moving at distinct speeds. A natural

question to ask is whether such "N-tuple waves" exist for the full set of

Euler equations governing the fluid flow in a canal.

For N = 1, such wave solutions, known as solitary waves, do in

fact exist [3,4,9]. In [91, Friedrichs and Hyers Qave a formal expansion

procedure for the Euler equations in which a time-independent form of the

KdV equation arose as the equation satisfied by the lowest order term.

The higher order terms of their expansion satisfied the inhomoqeneous

form of the linearization of the non-linear ordinary fifferential equ.ation

for the leading term. With a symmetry condition added to the requirtmrnt

of exponential docay, this equation could be solved uniquely. A\ftec'r re-

formulatinq the problem, the convergence of this formal v-olution wI

Thown by the iml icit Fiuvtion theorem. Later P(,a.le [41 imj ii: I

argument by usin a generalized implicit function theorem dii. to :ehni
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[25]. In both of these a,-roaches, the time-independent nature of the

problem is relied upon from the beginning.

In attempting to generalize these results to N-solitons for N 2,

the problem becomes unavoidably time-dependent. An essentially trivial

step in both approaches to the solitary wave problem, namely inverting the

linearized KdV operator, now becomes a serious difficulty. Constructing

a formal solution which behaves like a N-soliton requires solving the in-

homogeneous linearized KdV equation with prescribed asymptotic behavior.

We do this for the first order correction term by using the explicit form

of the inhomogeneous term. For higher order corrections, the existence

of some solution is guaranteed by Duhamel's principle and the solvability

of the Cauchy problem for the linearized KdV equation [19]. However, in

such an approach, initial values (say at t = 0) 'parameterize' the set

of all solutions and we cannot as yet single out those solutions with the

desired asymptotic behavior.

In this paper we present the following results:

(i) The time-dependent analogue of the formal expansion of Friedrichs-

Hyers [91 is developed. For perturbations of a steady horizontal

flow with Froude number near 1 which are of small amplitude,

long wavelength, and slow time variation, we consider a formal

power series solution of the Euler equations. The small per-

ameter c is related to the Froude number. As in [9], the

leading term satisfies the KdV equation and the higher order

terms natisfy the inhomogeneous linearized KOV equation. How-

ever, in this case, both of these equations are time-dependent.

(Ji) iTisng results on the solvability of the Cauchy problem for the

] anarized KdV equation (191 and certain facts about N-solitons,

we analyze the first order term completely. In particular, we
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show that this term is uniquely determined by the following

conditions :

(a) (symmetry) u(x,t) = u(-x,-t)

(b) (asymptotic decay in moving frames)

u(ct + E,t) - 0 exponentially fast as

t+ for fixed unless c = c.

j 1,...N where {c.} are the NJ

soliton speeds

(c) (asymptotic shape)

lim u(c.t + &,t) is an exponentially
t4
decreasing function of .

This is the sense in which we use the term justification in the title of

this paper. The first order correction to the KdV N-soliton, as chosen

above, does not alter any of the essential features of the solution.

After a long time, the water wave decomposes into N travelling waves

with distinct speeds, each of which is exponentially decreasing in

space when viewed from the appropriate moving frame of reference.

Section 2 contains the time-dependent analogue of the formal

expansion of Friedrichs and Hyers [9] as well as the mapping formulation

of 5eale [4]. For the latter set-up, invertibility of the linearized

mapping at - = 0 is shown in the Formal sense provided the linearized

KdV operator is invertible. The basic facts 'oncerning the Cauchy

problem for the linearized KdV equation are presented in Section 3.

Explicit solvability for this problem is related to the so-called

inverse scattering method for Folving the KdV equation [10, 19]. Using

certain facts about N-solitons, which we present in the Appendix, and

the particular terms arising in the expansion of Section 2, the first-

order correction to the N-soliton is analyzed in Section 4.

-3-



2. THE EULER EQUATIONS, THE KdV LIMIT, AND A FORMAL EXPANSION

In dimensionless variables, the Euler equations for a perfect

fluid in a two-dimensional, flat-bottomed domain D, with a free boundary

y = r(t,x) as upper surface, subject only to gravitational acceleration

q are (cf. Stoker [21]):

(i) ) + 4y 0 in D E{(x,y) : 0 < y < F(t,x)}
xx yy

(ii) 4y = 0 along y = 0

(21()

(iii) 4t + 1_ ( + 02) + y y = constant
t 2 x y

along y = F(t,x)

(iv) rt + 4x " 1x - 4y = 0 along y = F(t,x)

where 4 = 4(x,y,t) is the velocity potential and y -h  where h is
U
2

the length scaling and U is the velocity Lcaling.

'-1/2 is called the Froude number or reduced depth and is a parameter of

the problem. The linear theory of water waves (211 predicts y = 1,

while the existence of solitary waves occurs for y < 1 but sufficiently

close to 1. From now on, we assume

(2.2) 0 < 1 - y << y< 1 and in fact, we define a small parameter c

by the equation: y = e

In this section, we will consider flows which are very nearly the

trivial flow of constant horizontal speed 1 given by the solution

x, = 1, y = 1 or (2.1). Introducing auxiliary variables )',n'

which vary over a fixed horizontal strip 0 < n? < 1, we may eliminate

the unknown free surface at the expense of defining x,y as functions

of F), ', t. In steady flow problems, t does not appear and ' +i'

is usually the complex potential function, but for time-dependent

-4-



problems, we express both the potential function and the physical

coordinates x,y in terms of f, Yn' and t. Provided the mapping

(F',n')+ (x,y) is invertible for every t, solving the problem in the

n n' plane is equivalent to solving the original system in the x,y

plane. In the neighborhood of the trivial horizontal flow, this mapping

is roughly the identity map, hence it will be invertible.

After tcxpressing the problem in these new independent variables, a

new dependent complex variable, A? - i9', defined as the logarithm of

the complex velocity W (W _ x- iy), will be introduced. By different-

iating with respect to F? along q' 1, ¢ is eliminated and a new

system of equations for x, y, A', 9' is obtained. Defining a small

112
parameter a - /, we rescale the independent variables ', )" t and

the small dependent variables 1', 0', x' x-rt, yI = y-ni. The system (2.1)

in the rescaled variables, , r, and x, y, A, 0 respectively, becomes:

1/2 1+ 1/2- 1/2 1/2
-( + i H) (x + ic 1/ = (E_-) (A _ il/0)

= 0 in 0 < ]< 1

(scaled Cauchy-Riemann equation)

(ii) = 0; y = 0 along n=0

C-A 3/2 2 3(iii) e fcos (C ) [F X + (, (X - x ),  + C (0Y - Ky) I

(2.3) sin (E- 3/2 C) + 4
3/2 T + T y y T + I

+ e 2 + e y =0 along =

(Bernoulli's law)

,3/21"3/! - sin (3/ 9)(' iv) e y<cos ( % - e (1+£x<) 3/2

2
+ y + k- (x v - x y-) = 0 along =

(free boundary/streamline condition)

. l - • . - l | - I
f - -

[
i
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We proceed to derive system (2.3) below and then discuss a formal

expansion procedure using power series in E. A mapping formalism, as in

Beale [4], is also presented and formal invertibility of the linearized

map at £ = 0 is examined.

A. Reformulation via a Conformal Mapping

Introduce complex variables into (2.1) as follows:

z - x+iy, F(z,t) I (z,t) + ii(z,t). The complex velocity

W(z,t) FZ (z,t) =  x - i y so Re W = x' the horizontal velocity, and

-Im W = , the vertical velocity. Since we are considering flows near

the trivial one, for which the free surfaceis F(t,x) - 1, we assume that

there exists a complex variable rA = l ' + in' defined on the fixed strip

S(I',1') I 0 < ,, < 11 and a conformal mapping z = z( ',t) such that

the boundaries of the flow domain, y = 0 and y F(t,x) (where y = Im z)

correspond to the boundaries n' = 0 , t'
= 1 respectively.

Given the existence of such a mapping, we define new dependent

variables implicitly:

f( ',t) -F(z( ',t),t) ;

(2.4) w(J)',t) - W(z(C',t),t) so that

f

w(r',t) =

Thus l crivatives of f are expressible in terms of w and z.

Substitution in (2.1) and differentiation with respect to ? along ' = 1

yields a :;y7tem with w,z as dependent variables, namely:

-6-



(i) w(t,t) and z( tt) are holomorphic functions of

? in 0 < Im C' < 1

(ii) Im w = 0 ; Im z = 0 along n' = 0

(iii) Re (wz wz t  + Lw (tw,2 ) C + y Im (zc,) = 0

(2.5) (ii Re (wz1 wt) 2

along nt = 1

(iv) Im (zt/z ) + Im (w/zC,) = 0 along n' = 1

(This last condition comes from the relations rx = y,/x,

Ft = yt - xon f' = 1.)

It is convenient to replace w by i' - ', defined by the relation

(2.6) w = e

This substitution was introduced by Levi-Civita [16] in the periodic case

of infinite depth; it has the virtues of simplifying the Iw differentiation,

ensuring w / 0 for any solution, and making Xt - iet E 0 the trivial

flow. Upon substitution, we obtain:

(i) z( ',t), (X'-iO')( t ,t) are holomorphic in

r' for 0 < Im C, < 1

(ii) 01 
= 0, y = 0 along n' = 0

(2.7) X'-ie'
(iii) Re (e x At - io - (AI, , z

e 2 I + Y Imz =0 along nt =1

(iv) Im (zt/Z ,) + Im (e /z,) = 0 along n' = 1

-7-



We note that this is a system of equations for two holomorphic functions

on a strip which are real for C' real (the bottom) and satisfy a pair of

coupled nonlinear time-dependent boundary conditions along the top of the

strip. Kano and Nishida [11] used essentially the system (2.5), along with

some basic facts about harmonically conjugate functions on a strip, to

obtain a nonlinear expression for the t-derivatives of x and along

i' 1 , for which a solution will exist to the Cauchy problem for small

times (see also (181).

We will now consider a particular limiting case of system (2.7)

corresponding to long wavelength, small amplitude waves of slow time variation

and will obtain the Korteweg-deVries equation in the limit. We assume that,

as K' [ , X' -iO' - 0 and z,1 1, so the perturbations from the

steady flow vanish asymptotically. The limiting case is given by the

following rescaling:

Define new independent variables

3 t  2
(2.8) T at , = l T where a =E,

and new dr(pendent variables x,y,O,X by:

ax( ,n,T,6) = Re (z( ',t)) -

a2yU,,n,T,E) = Im (z(,',t)
(2.9)

, = ).' (< ,t)

-8-



Substituting these variables into the system (2.7) gives system (2.3)

above, which we have therefore derived.

B. A Formal Solution Procedure

If we consider the system (2.3) and assume expansions for X,e,x,y

of the form:

6( n, , = ( ,n,r) 9j

j(=0
]=o

(2.10)

L x 
) 
, ,T) 

j

j=0

Y(K,n, ,) = (j ,n,T) J
j=0

then (i) of (2.3) implies the system:

X( j )  + 0 ( j )  = 0 ; X _ (j) + 0(j-) : 0

(2.11) ) n

S:(j) + (J) (; ) +y. = 0

(0) 0 0)
In particular, n 0 x 0 . From the boundary condition (ii)n

on 1, y at n = 0 , this implies:

(0) (0) ^(0) ^(0)
: ( ,t ) x x (7,) ;

(2.12)

(0) I(0) ^(0) <(0)
:x T)



1 .(0) 3 '1)
so (1) (,n,T) = - ( X (E,T) T + (,T)2 2 (i)

x T)=) 1i ^ O ( T) T, + P~l (E,T)
x (F,n,T) =  - X () I

L , (0) 3 p(1)
6 , r x+ &( ,T)(E,T) n

Proceeding inductively, with Q(0) A i 0  P) p() () we have

(k) 'I)j n2j 2 j Qkj=0 (2j)!
-(k) (- I) i2j 2 (k-j)I ,flT -jO (29) ! (~ Qkj ( ,T)

3=0
(2.13)

with similar expressions for , y~ involving odd powers of n and

)29p
Thus if \(IJ j <k, are known, and similarly for x(j I there

(k) C -)(2 )q J (k -j

.xre two unknown functions P ( ) Q (k ,T) which arise in terms of

nrfii-r :kand higher. Substituting these series (2.13) into the two

boundary conditions at r = 1 1 namely

I Thu if 4c [( +)  ( T

, n 3/2 1, 4 r nwadsmlal o hr
;i(C)k)+ 4 (k+)

3,2T ~ T F T r T T)

along n 1

~ ( /'2- si( 3 2 ) - y + C Ty} 0 alongn

obfair, '~('ttn r 0

(0) (0)

(,. ) y,+ s T ) 0

From rcacl T iat ion.

-10-



Terms of order e in the boundary conditions at n = 1 are:

( (1) + 2X (0OO) + y l) ^1o ) =)

(2.15) [ ^() i ^(0) (0) ^ 3( )

I y - @ - X4 = 0

which imply:

1 (0) + () + 2Q(0) (0) 1 p() + (1) (0) + Q(0) 0- -Q[ +Q< + 2Q -- +Q 3 =0
T

m(1) 1 _(0) 1 Q(0) + Q() + (0) (0) + p(0)
S 6 &T P ~ ~ =

so that P E1) + Q() is known in terms of Q(O), p(O) and drops out upon

subtracting these two equations. If we integrate (2.14), we have

(0) (0)
Q +P -0 (by our boundary conditions as W ), so that the two

boundary conditions for order e imply:

(0) + 3 (0) (0) + (0) - 1 Q(0) = 0
(2.16) 2Q

which is a form of the KdV equation.

Remark: The formal expansion of Friedrichs and Hyers [9] for the solitary

wave has the time-independent form of (2.16) as the equation for the leading

term.

If we pick any Q(0) satisfying (2.16), we obtain P(0) by integration,

(0) (0)since P =_Q

k
The order c terms in the boundary conditions yield two equations

of the form:

(k ()(k1 (k-1) (0) + (k) (k-1) + (k-l)
x~)+ 2 X 0 2X-l X 3y R-

(2.17)

^(k) -(k) - (O)(k-l) _ '(k-l)0(O) + ^(k-l) S

where R, S (and later , depend only on P(, Q for j < Z.

-II-



Thus P(k) ( Q ) -i and again, by suotr-.ztion,

(2.18) 2A (k-i) + 3 (X(O)X(k-l)) 3X (k-i) _ i (k-1)
T C -k-2

where we used P (k-1) + 2 (k-i) to eliminate (k-l) in (2.18).

Inductively, we find a formal solution using the power series (2.13) by

solving (2.18) for X(k-1) and then obtaining by the relation

P (k-1) + (k-i) -p~k-l) Q -2"

The nontrivial step is solving (2.18), the linearized KdV equation

with inhomogeneous terms. For water wave solutions of the system (2.3)

which behave like N-tuple solitary waves, we would choose for X(0) an

N-soliton solution of the KdV equation and then solve (2.18) with this

(0)
x , seeking solutions with the appropriate asymptotic behavior.

C. Reformulation as a Mapping

We may formulate the equations in (2.3), somewhat artificially, as

components of a mapping F(c,e,y), where the equations (2.3) correspond

to F(cOy) = 0. This will be the analogue of Beale's approach in the

stationary case [4]. We begin with (2.3), ignoring the fact that this

is the rescaled version of (2.8).

Thus, we consider functions y( ,r,) and 0( ,n,T) satisfying

y(i,0,T) = 0, O(F,,0,T) 0 and define:

(2.19) X(F,-,) = y (', ,T) d '

f= - n(',n,T) dg'

-12-



The vector of functions F(:,0,y) = (FI,F2,F3,F4 ) is defined as follow)

(note: Fi, F2  are functions of ,n,T while F3, F4  depend only on

1 n T+ 2 - n

2cX 3 X 3/2 2F ^Xe + 3 + e<cos(F30) [EX +C (X x-_x)
F3 -.20) + y e T

3/
+ s3( y - 4 X

(2.20) (T

+ 3/2 sin(E: 6)8) 3/ + e + C A
F 4 -ycos(3/2) - (l+ex ) +i~ /8 -ely +

^  (xy .. . y
4 3/2 + r xy - xyj

where F 3, F4  are evaluated at n = 1.

The degeneracy at s = 0 which we observed in the formal expansion

above (X ( j ) , x ( j ) were only determined by order d + ' equations) may be

removed by considering a modified operator F(C,0,y), which has the same

roots as F for 6 > 0.

We examine the kernel of F(0,0,y): If F(0,0,y) = 0, then 0 = 0

Y r = 0 ; yr - 01q l = 0 ; y - 0. Recalling that 1=O =  e1,= 0 0

this gives the solutions:

(2.21) y = G( ,T)- n ; G = (<,") n

where G(F,T) is arbitrary except for the asymptotic condition:

G(,-r) - 0 as I< - =. To study the range of F(0,0,y) , suppose

F(0,6,y) = (c,,r,s) Then since 1 - 9'l = fn0V dn = f n'. dn,

we must have the compatibility condition:

(2.22) s - r = n'a dn

If we suppose that a,C ,r are arbitrary functions which vanish as

-j for T fixed, and define s(,T) by (2.22), i.e.

-13-



S = r + 1aq dn then F(0,6,y) = (cx,$,r,s) if

0

(2.23)0

n

0(&,n,T) = f (n-n') B( ,n',T) dn' + B( ,T)n

0

where B ( ,T) - A(,r) = s(- ) Jn 1-' ) C%) dn+

0

We will define a modified operator F by means of a projection Qon

the range space which incorporates the solvability condition 
(2.22). Define

1

(2.24) Q(a,),r,s) = (0,0,0, E - r - f a-n dn)
0

Clearly deis a projection and QF(0,6,) E 0. Defining f(,eci) as:I22 s (,, + (I-Q) F(E ,,y) > 0

E0

(2.25) F(,O =

QF (0,,y) + (I-Q) F(0,8,y) , 
= 0

F is a smooth operator with the same roots as F for c > 0, but the

additional condition QFc = 0 leads to more regular behavior at c = 0.

In fact, the added condition is precisely the KdV equation -- i.e. suppose

F0,O,y) = 0. Then QF (0,6,y) = 0 means precisely:

1

(2.26) - 0x_ - X + 3y- 2XX - 0 n' dn' = 0 for n = 1.

0

Since QF< 0 at C = 0, (I-Q)F(0,e,y) = 0 implies e = G(,

S(;(,).l, using the relation A = - e en dE = -G(ET) in (2.26)

above, we obtain an equation for X , namely:

(2.27) - 2 - 3AX - 3X + = 0

-14-



where X = ?( ,t) , y = -X((,T)n , 6 -X(,.)n. This is the KdV equation

(2.16) above.

In the case of the solitary wave, Beale was able to find an appropriate

scale of Banach spaces for the domain and range of F. He then proved that

in a neighborhood of c = 0 , 6 = 0 (corresponding to the 1-soliton KdV

solution), the Fre~het derivative of P was invertible in the generalized

sense of Nash-Moser. This implied the existence of a nontrivial solution

for c > 0 sufficiently small by means of a generalized implicit function

theorem (Zehnder [25]).

For the problem considered here, we have not as yet specified the

proper function spaces. Continuing on a formal level, we consider the

linearized operator at = 0, 0 = 00 , I where 0.

We shall define another projection, P, mapping (e,y) onto the

kernel of F(0,-,') by:

(2.28) P (9,y) = (y ( ,I,T) . (n ,l,T)-'n)

We note: P(ey) = (0,0) if and only if y(,l,T) S 0. Using the pro-

jections P and Q , we may regard the linearized operator dF

as a matrix of operators:

( Q dfl (I - Q) dFil
(2.29) d ( Q dFI-r (I - Q) dFII-p

Since (I-Q) dFIp 2 0 , invertibility of dF reduces to invertibility of

the 'diagonal elements' Q dFlp and (I-Q) dFIp. We remark that

(I-Q) FEI p is a linear operator, whose inverse we may compute explicitly.

The equation (I-Q)FIIp (0,0,Y) = (aL,,r,r+ f 0 a In) has the unique

0
solution:

-15-



(2.30) 0() f f (n-n') a(&,n',T) dn' - n[r(E,T) + f C([,n',r) dn']

0 0

Y(Efn,) =  (N-n') 8(E,n',T) - n[ f (l-n)a(t,n',T)dn']
0 0

which is obtained by adding the condition Y(,l,T) E 0 to the solutions

given previously in (2.23).

The essential difficulty with this inversion is that the Banach spaces

for 0,Y may include & and T derivatives in their norms; for this

reason, Beale uses a generalized implicit function theorem in the station-

ary case (shrinking the domains of analyticity in order to control deriv-

atives).

The second diagonal element, Q dFiJ, is invertible if we can solve:

(2.31) - 2H - 3 3X.H) + H
t 3 3 U

the inhomogeneous linearized form of the KdV equation (see equation (2.18)

above).

For the remainder of this paper, we consider the linearized KdV

equation. As we have seen, it arises in the study of small amplitude,

long wavelength, slow time variations of a steady flow of a perfect fluid

over a flat bottom with Froude number near 1. If we seek solutions describ-

ing a 'nonlinear superposition' of N solitary waves of distinct speeds,

the first approximant will be an N-soliton solution of the KdV equation

ind the higher order corrections will satisfy the inhomogeneous form of the

linearized KdV equation (linearized about the N-soliton).

We shall consider the Cauchy problem for the linearized KdV equation.

By Duhamel's principle, this amounts to solving the inhomogeneous equation.

By the change ot variables,
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(2.32) X - 9T

- 6T

3
q(X,T) E T)

2

we obtain the usual form of the KdV equation

(2.33) qT + qXXX - 6qqx = 0

We note that the T-independent solution of the KdV equation is a function

of X - 9T ; this gives the one soliton with speed 9, which explicitly is

(0)= 3sech2 (1 ), the first order term on the expansion of Friedrichs

and Hyers.

In the remaining sections, we shall use the letters x,y,t,u,v etc.

for meanings other than those of the above section. Since these different

meanings occur in separate places, this should cause no confusion for the

reader.
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3. SOME RESULTS ON THE CAUCHY PROBLEM FOR THE LINEARIZED KdV EQUATION

In this section, we summarize the results of [19] regarding the

Cauchy problem:

u t + U - 6(qu) = 0

(3.1)

u(x{0) = P(x)

where q(x,t) satisfies the KdV equation

(3.2) qt + qxxx - 6qqx = 0

By Duhamel's principle, the inhomogeneous form of (3.1) is solvable if the

Cauchy problem is.

In [19], an explicit formula for the solution of problem (3.1) is

given, using certain functions arising from the Schrdinger equation

(3.3) -f''(x,k,t) + q(x,t)f(x,k,t) = k 2f(x,k,t)

where the potential q(x,t) satisfies:

(3.4) f (l+x2 ) lq(xt)ldx < m for every t fixed.

The fundamental discovery of Gardner, Greene, Kruskal, and Miura [10],

later formulated abstractly by Lax [15], is that if q(x,t) e;volves

according to the KdV equation (3.2), the spectrum of the Schr6dinger equation

(3.3) is fixed and the associated scattering data evolves in a simple way.

We s"hall use this information below, but first introduce some notation

and basic facts about the scattering theory for (3.3). This information

(and much more) may be found in [7].

Let fj(x,k,t) denote the Jost solutions of (3.3)

i.e. f +(x,k,t) ru eikx + 4ik 3 as x + + , t fixed

-ikx - 4ik 3 t
f (x,k,t) r, e as x-*-, t fixed
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and both satisfy (3.3). We define the transmission coefficient, T(k,t),

in terms of the Wronsk:an of f+, f_ as follows:

(35) 1 _1 ~(~
(3.5) T(k,t) 2ik +(x,k,t), f_(x,k,t)]

f'+(x,k,t) ff(x,k,t) - f'(x,k,t) f (x,k,t)

2ik

(We shall always use the notation: It is not hard to

show that T(k,t) = T(k) is independent of t and that under the normal-

ization of f+, f_, T(k) is meromorphic in the upper half-plane Im k > 0

with poles at k = i8j, j = 1,...,N where each energy -02 is a bound

state energy for (3.3). N is finite by a classical estimate involving

F(l+Ix)lq(x)!dx < -. T(k) is also continuous and non-zero for real

k # 0 . For notational ease, we introduce for j = 1,...,N the following

pair of functions:

f2
(3.6) F.(x,t) = f 2(x,i8jt) ; G(x,t) = cjf (x,iojt)- gj(x,t)

+ +

where gj(x,t) = 1 d [f_(x,k,t) f+(x,iojt) f+(x'k't)]akd c.
'dk f(x,) (x,i t) + fo j k=i . ad

is chosen so that j (x,0) G.(x,0) dx 1 for 1.,

The principal result of ['9] is the following:

Theorem 3.1 Suppose q(x,t) satisfies (3.4). If O(x) is continuous

and integrable, the solution of (3.1) (in the sense of distributions) is

given by:

(3.7) u(x,t) = 4ik T (k) [f2 (xkt)f(yk,0)

-w

~J f[F'(x,t)Gj(y,0) - G'(x,t)Fj(y,0)] (y) dy
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For a proof of this theorem, see [19].

Remark: It is known ([10], Theorem 3.6 or [19]) that the functions

(f2)'(x,k,t), F!(x,t), G!(x,t) all satisfy the linearized KdV equation

(3.1). The formula for u(x,t) resembles the Fourier decomposition of

S(x), where the derivatives of the squared eigenfunctions replace the usual

exponentials and the presence of a non-zero potential q(x,t) can lead to

the discrete terms F'(x,t), G'(x,t). In fact, when q(x,t) H 0, (3.7)
J J

reduces to the usual Fourier transform solution of the Cauchy problem:

(3.8) { x x)

v(x,0) = (x)

namely

(3.9) v(x,t, -- * e2ikx+ik 3t{ f e-2iky (x) dy}
--co -o0

S±(ikx+4ik 3t)
since for q - 0 , T(k) =- 1 and f+(x,k,t) = e

Noting that the solution u(x,t) given by (3.7) consists of two

pieces-- a discrete sum and an integral, we analyze them separately. The

sum corresponds to variations in the soliton part of the function q(x,t)

and decomposes into travelling waves with positive velocities as t

becomes large. For the water wave problem of Section 2, these terms are

of considerable interest. The k-space integral part of (3.7) forms a

dispersive wave train and will be seen to behave like the solution v(x,t)

of the Airy equation (3.8). In particular, for initial data which is

somewhat smoother and more rapidly decaying than was assumed in Theorem 3.1

above, we show that this part of the solution u(x,t) is smoother for

t > 0 but, as x - , it decays less rapidly. We present these results

for linearizations about N-soliton solutions of the KdV equation. Similar

analysis applies for a more general class of KdV solutions satisfying
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(3.4); we omit such a discussion for the sake of brevity and restrict our

attention to the N-soliton case.

Slower decay as x - -- for t > 0 occurs because of the dispersive

d 2
nature of the oscillating solutions _1(f2 (x,k,t)) of the linearized KdV

dx ±

equation (see [24] for a general discussion of dispersive waves). In part-

icular, the asymptotic behavior of f2 (x,k,t) , as x ±' respectively,

±i0 (x,k,t)is given by the exponentials e , where we define:

(3.10) O(x,k,t) = 2kx + 8k 3t.

These waves propogate with a negacive velocity -4k2 so that waves with

large wave numbers contribute to the solution near x = - almost

instantaneously.

tie
The same expontentials, e , form the solution of the lineariz.oc

equation for q = 0 , (equation (3.9) above), namely

v + v CoO
t xxx

as is seen by Fourier transform, and arise in the asymptotics of

2
f2(x,k,t), which, by the trace formula of Deift-Trubowitz [71, lead to a

solution of the full KdV equation

(3.11)
qt + qxxx - 6qqx = 0.

(In [7], q(x,O) is written as an integral over the real line in k:

S2N 22
(3.12) q(x,0) j - (k,O)f2(x,k,O)dk + a f(x,i'.,O).

_+ j=l

An approach to tie KXV eqjuation itself using (3.12) will appear in a

subsequent paper by thj author.) The smoothness and decay properties of

the solution of the Cauchy problem for the KdV equation were analyzed by

T naka [231 and later Cohen Murray [5] usinqFaddeev-Marchenko inverse

-attring theory rather than the then-unknown trace formula (3.12);

-21-
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asymptotic analysis of the KdV equation also appeared in [1,2], where the
x

more delicate regions = 0(l) as t -*+ were also discussed in the

absence of solitons.

Our analysis for the linearized KdV equation proceeds in direct

analogy with the equation (3.8); the chief difference is the presence of

2
the factors m (x,k,t) multiplying the exponentials and their derivatives,

which must be considered in all arguments. The techniques used will be

primarily integration by parts and stationary phase analysis. In the

limits we consider, the stationary phase points tend to _+ , which

complicates matters slightly. As in [5], we will work in a shrinking

neiqhborhood of the stationary phase points, whose size is proportional to

L small naqitive power of I xj. This variation of the usual stationary

phase argument [8] is used to control the error terms arising at the

stationary phise points. The smoothness argument relies on the observation

[5] that fr t - 0, we may rewrite the x-derivative of e in terms of

the k-Jierivctives of S as follows:

4kk(1.13) ( )2 4k2

x 6t 3t

Wt will thi.- to re-express u as a function which is smoother thanxx

' , rve <apoear to be.

. ,t are summarized in the following theorem:

A.*:,; q, !; (x) , the initial data for the linearized KdV

;ill- aour continuous derivatives and that, for some fixed

x) I(x) E for 0 < a < 4.

,.hon q(x,t) is an N-soliton solution of the KdV equation,

X, in (° 7) above, has the following properties:
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(i" u(x,t) is a classical solution of (3.1) for t > 0

with u(x,0) = (x)

i) 3u(x,t) is continuous for t > 0 for all non-negative
t x

integers r,s satisfying 3r + s S 2k. + 2
(3.15) (iii) 

4 lju(xt)'xZ = 0 t > 0 fixed

(iv) IxI9/41u(x,t)I is bounded as a function of x for t > 0 fixed

(even as x - --)

(v u(ct+6,t)It 1/ 2 is bounded for c < 0 as t +w, fixed.

The proof of Theorem 3.2 is given in the three lemmas below, in which

the smoothness and the limiting behavior are discussed separately. First,

we present some facts concerning the Jost functions f+ (x,k,t) in the

N-soliton case, where we choose the phases of the waves so that q(-x,-t)

q(x,t). (Recalling the scaling done in Section 2, this normalization is

reasonable.)

The explicit form of the N-soliton leads to an algebraic expression

for the Jost functions (see also [61). In the proof of Theorem 3.2, we

shall exploit certain properties of these functions, which we state here

and prove in the Appendix. Define, for j = 1,...,N,

cosh(j cj), j odd

(3.16) Fl x - 2

sinh(g , j even

and consider the N < N Wronskian determinant (in x )
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l 2- . ... 
N

(3.17) w(x,t) det (1) (1) (" )

'p (N-i) 'p (N-i) 'p (N-i)
1 2 N

2 NN
WN ( 1f .... F N)

In the Appendix, we show w(x,t) > 0. The N-soliton solution of the KdV

equation is given by:

(3.18) q(x,t) - -2 -- log w(x,t)
dx

while the eigenfunctions f (xk,t) are given by the ratios:+

W + . i(kx+4k3 t)f

(3.19) f+(x,k,t) N

w(x,t) IT Ik - )
j=l

where WN+2 is the (N+l)× (N+I) Wronskian determinant. Writing

=+_i6 (x,k, t)
f4 (x,k,t) = m+(x,k,t)e , we deduce the following properties of

the factors m,(x,k,t) from (3.19):

(3.20) (i) m+ (x,k,t) are rational functions of k. Their

denominations and numerators are polynomials of degree

N in k ; both denominators are in fact precisely

N

7 k + iB.) while the numerators are polynomials
j=l N N-i

kN + A (x,t)k + ... + AN- 1 (x,t)k + AN (x,t) where
+

each coefficient Az (x,t) is a rational function of

{eJjJ which is bounded. The denominator of each
.4-

A (x,t) is w(x,t), which we show in the appendix is
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]J J

a sum of terms e J = L  over all possible choices

e. = +1 with positive coefficients for each term.
D

(ii) m_(x,k,t) is a rational function of k which decays

like Ik12 as IkI o.

(iii) mN(x,k,t) = N

T(k + is.)

j=l

so a11 x-derivatives of m+ decay like JkI-1 as

Ik[ -

N k+iB.
(iv) We also have: T(k) S-- 7

j=l j

(3.21) F.'(x,t) and G.t (x,t) are real analytic in x,t and for fixed tJ J

they decay exponentially fast as Ixf , - (see Appendix).

By (3.21), all the smoothness and decay properties of Theorem 3.2

are satisfied by Fj (x,t) and G.'(x,t). Therefore, we consider the
J 3

function Z(x,t) given by:

T (k) d 2 (x,k t)f2(y,kO) - f 2(x,k,t)f 2(y,kf0)(3.22 ) 1(x , t) -- 4 ik dx f' - - +Je - 4ni

p(y)dy dk.

Note that the integrand is continuous, even at k = 0 (since f (x,0,t),+

f_(x,0,t) are linearly dependent). Formula (3.22) suggests the following

definitions:

(3.23) (k) - J f2(y,k,0) (y)dy

Sm 2(y,k, 0)e± 2 iky(y)dy
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We will analyze +(k) just as in the usual Fourier transform case,

using (3.20) to control the extra terms. Thus we shall see that 3(x,t),

given by (3.22), and v(x,t), the solution to the linearized problem for

q = 0 given by (3.9), behave quite similarly.

The first part of Theorem 3.2 is contained in the following lemma.
Lemma 3.3 If (1 +L x) I(x)EL for all 0 < a < 4 where Z > 4

is fixed, then the functions 3 s u(x,t), where u(x,t) is given by

(3.17) are continuous for all non-negative integers r,s satisfying

3r + s - 2Z + 2.

Proof of Lemma 3.3. The idea of the proof is a follows: we show that

(k) decay rapidly enough as Ikl-*oo that we can differentiate (4.9)

twice with respect to x and still have a convergent integral. Then,

using (3.13) to eliminate the -4k2  factor arising from the exponentials

and the estimate (3.20) (iii) to control derivatives of m (x,k,t), we show

that the integral for u can be differentiated twice. Repeating thisxx

argumnent, we obtain the desired result.

Step 1. We T;how that d (k) exists and is O(,k, -4) as k -

for < Z.

Proof of .t..cp I. If we integrate (3.23) by parts, we have:

(3.24) , (k) d (m (y,k,O) (y))ei 2 ikYdy.

The iritegrAl is absolutely convergent by our assumptions on and the

iVropEcrtier of m,(y,k,0) listed above. In fact, we may integrate by

part-; four t imes with respect to y, obtaining

(3.25) ~ (k (2ik) 4  J (m (y,k,O) (y))e ky

ar-r! the ntiral is still absolutely convergent. Thus + (k) is+

;ijtce (I + Ix (x) C L1 , the k-derivatives of , (k) of order less
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than or equal to Z all exist. Integrating these expressions by parts

four times, we find

(3.26) d J (k) = O(Ik1 -4 ) as Jki + for 0 -< y < Z,

which completes Step 1.

Step 2. (The smoothness for t > 0). Writing

(3.27) u(x,t) - T (k) [m+ (x,k,t)e (k)) - (m2 (x,k,t)e- i+ (k))]

we have a continuous integrand which decays like Jkl - 4  as fkj I-.

Therefore we may differentiate twice with respect to x and still have

a convergent integral. This yields:

t dk T2 [_d 3 2  ie 2 -ie

(3.28) Tx,t) = T (k) _ m (x,k,t)ei (k) - m (x,k,t)e (k)
xx f47rik Ix) +1 ~,, - +

Since 6x 2k and m+'(x,k,t) decays like Jkl -1, the terms on the

integrand in which m+' (x,k,t) or a higher derivative appears all have

decay like Jk -4 or faster; these terms can therefore be differentiated

twice more with respect to x. The remaining terms, in which the exponential

is differentiated three times, are:

(3.29) T 2 (k) (-4k 2)m2(x,k,t)ei'6 (k) + m2 (x,k,t)e-ie+(k) dk}

T23.29)[2x k 2

6t)k x 2(x,k,t)e (k) + m2(x,k,t)e +(k) dk
= 2

7 3t 6 m+ - 2

by (3.13)

T2 (k) m(xt)eio (k) + m2 (x,k,t)e- i ~ (k) dk

+ 1 f-(T (k)m (xk, t) $_ (k) ei
12Tri t g+

(T2(k)m2(xk,t) (k) e- i  dk
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where we integrated by parts in the second term. Each of these terms

has continuous k-integrands which decay like IkI- 4 or better; hence

they are also twice differentiable with respect to x. Therefore u(x,t)

has in fact four continuous x-derivatives for t > 0. Repeating this

argument iteratively, we obtain u(x,t) has 2Z + 2 continuous x-derivatives

(since we can only bound $+(k) for 0 < y < i, we may repeat the

argument 2 times).

To handle t-derivatives, we note that differentiating directly in t

3
brings down a factor 8t - 8k , which does not a priori lead to a

33
convergent integral. However, multiplication by 8k3 may be expressed

in the sense of distributions as plus convergent integrals. Since

u(x,t) is continuous, so is ut. The equation (*) then gives

higher regularity and the desired result. This proves Lemma 3.3.

The decay as x - +-, t > 0 fixed and finite is given by:

Lemma 3.4. For t > 0 finite, fixed, ju(x,t) xzI , 0 as x -+

Proof. Once again, we need only consider u(x,t) since F' (x,t), Gj' (x,t)

decay exponentially. For x > 0, t > 0 we note that ek = x + 24k 2t>0

and in fact:

(3.30) = 48kt < x
0k 2x +24k 2

Note also 0.k = 48t, which is bounded. Write

COi
(3.31) Z(x, t) = o(xkt)e edk

by defining
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T- (k) d[ 7  2(,e 'k
(3.32) P(xkt)ei 4 k dx _

+T(-k) d 2 i e

4irik ~ m(x, -k,t)c 0 ( -k)

We note p(x,k,t) is continuous in k and decays like kl - 4  as Ikl +

as does p(x,k,t) for 0:5y Z.

Integrating (3.31) by parts k times in k, we have

(3.33) u(x,t) = (i)£ , L 1 J kt ei dk.

Using (3.30) and the obvious bound 1 < 1  for x > 0 we obtain an
10 k 2x

estimate, for t > 0 fixed,

(3.34) u(x,t) 1 !5 (2x) C(t) for x 2 M > 0

where C(t) is polynomial in t1 /2  of degree at most 2 - 1.

Moreover, since the integrand in (3.33) is integrable, by a simple

modification of the usual Riemann-Lebesque lemma (namely, pick K with

f + f < C then approximate by a smooth function and integrate by parts),

-00 K

we can show x u(x,t) - 0 as x + +' for t > 0 fixed, which proves

lemma 3.4.

Finally we discuss decay as x - - for t > 0 fixed:

Lemma 3.5. As x - -- for t > 0 fixed, u(x,t)-x 9 / 4  remains bounded.

1/2
Proof of Lemma 3.5. Define a E -x For x < 0, t > 0,

2Yt
ek = 2x + 24k2t = 0 for k = -a. As x 4 -- , (for fixed t > 0), a++=.

Let k = aK. Then

(3.35) u(x,t) = { p(x,k,t)eiodk = a { (x,OK,t)e dK

where 1/2 and 6(K) I -K + K3, 3, so that -() 0 for K +

(12t) 1/2
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In the usual stationary phase method, the chief contribution to the integral

comes from the terms

3+ -fl+c

1 1+c (x'O't) e iX-+ 3 /31 dK and p(x,cx,t)e X6dK

where the K value is frozen at K = ±1 in the function p. The extra

termn [p (x,aKt) - p(x,at)]eX6 dK is of lower order for large X by

bounds on the derivative. In the case considered here, a - - so this

error term may become large. To counteract this, as in [51, we consider

a very small interval about the stationary phase points K = ±1, of order

lxK-  for instance. We estimate as follows:

1-C I+E ~

(3.36) f p (x,,X, t) e d = a p(x,a,t)elX dK

i+E

+ I (p(x,aK,t) - p(x,a,t))e lXdK

1

l+C
= p (xa,t) e eiX6dic

1

2 d - f i- e d+ a p(x,aI',t)J leld

1

for some r E [1, i+6]

T'e firsL t -rm is estimated as in the usual method of stationary phase;

tlie ectc. t rm leads after an integration by parts to an estimate of the
-2 -Id . Wit - 0 <12

s.rn Z 1 .ince -P decays like Jk! -4  With C = , 0 < < 1/2,
dk I

this ton; L;u of order lx-5/2-u as Ix N =. The first term decays like

- , -9/4
•(ix I  as !xH + and is the leading term.

Si:tjlar (2-timates hold on the intervals [i-c,l], [-l-E,-I], E-l,-l+c]
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On the interval [l+s,-), we estimate as follows:

(3.37) p(x,au,t)e1AdK = -a eiX[2/3+e 3 /3]f i (2+ p (x,(l+c) ,t)
+ E

which leads to a bound of the form:

(3.38) a f P(xaKt)e ixdK 5 (X- 1-3-i). C1

1+E

-1 -2 -1 -1 -3 -2
+ x- 2 C 2 +X a e C3

O(jx[- 3+2u) since 0 < u < 1/2

A similar estimate holds on the interval (-=,-l-e].

Finally, on the interval [-l+e,l-e], we have:

(3 .3 9 ) a P (X a' 't ) iX
6 d K = P (x 'a 1 t ) e i K =1

i ( 2  iC l+ E

1-C F

2[d p(X,aK',t) ie
i-- 2 -' I e dK.

Integrating by parts three more times, we obtain:
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(3.40) L p(x,aK,t)e ixedK

-l+C

= (x(aK t) eiXA

Z-) I ix (K 
2 1)1 iX (K2 _1i) -i+1

+ - (x E[ 1 .]4 ) aK eiX~dK.

K i X ( ( 2 _- 1 )
- +E !

The boundary terms lead to estimates, for £ = 0,1,2,3 of the form:

x-1c-3 -1 )-2-3c-3
1 a- 3 ; E 1 X (1 + CL);

3a-3 - 5 I + ac + a2c2) ; a C (l + c +c + a3C 3)

respectively.

Since a is 0(IxI1 /2 ), A is 0(IxI 3/ 2 ) and e = jxj - , the

inequality u < 1/2 implies that the leading term is the first,

i.e. X-1 t-3 -1 = 0cIx- 3+u) as xl

The remaining integral

F d 1 2 p(X,cXK It) ei d,

has a bound of the form:

-5- 4-5 c3 -6 c2 -7 -8)

C X-4( 5 - 4  + a4c + + a + CE

which has leading term

-A F O[IxK 2+")jas xj
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This can be chosen to be of lower order than the contribution from the

stationary phase points, by making

7 9 5
-7 + 4u< - ,which is true for u < 5

This completes the proof of Lemma 3.5.

To finish the proof of Theorem 3.2, we remark that if x = ct + +,

c < 0 then a - as t - +', and the usual method of stationary

phase applies [8]. This gives a decay rate of X- 112 which is proportional

to t-1/ 2 and finishes the proof of Theorem 3.2.
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4. GLCOBAL BEHAVIOR AND UNIQUENESS FOR THE FIRST ORDER TERM IN THE

N-SOLITON WATER WAVE PROBLEM

In section 2 above, a formal expansion procedure was given for the

Euler equations for a fluid in a flat-bottomed canal which was near the

constant horizontal flow of Froude number 1. We now show that the choice

of an N-soliton solution of the KdV equation as leading term in this

expansion results in an equation for the first order term which has a

unique "N-tuple wave" solution if we add a symmetry requirement. As noted

previously, this term satisfies the inhomogeneous form of the linearized

KdV equation:

(4.1) Lu - ut + uxxx - 6(qu)x = h(x,t)

whore c(u,t) is an N-soliton and h(x,t) is a term which depends only

on q(xt). A simple calculation shows that in fact h(x,t) is a linear

combination of the functions:

2
% I qqx I qxxx ' q qx r q qxxx F qx qxx ' qxxxxx

We remark that h(x,t) contains terms of the form F.(x,t), which
J

satisfy th,2 linearized equation. It is rather surprising that these

"secular terns" [13] do not give rise to resonant solutions. The usual

choic for the solution to Lu = F! would be tF! , which grows linearly
J J

in t in thie moving frame in which . x-48 2 t remains constant as

t I'.,aver, the function G. (x,t) is a solution of the homogeneousJ

:uni eC Cformi (see the discussion in the Appendix)

(4.2) ( (x,t c. [(x-12 2t)F'. (x,t) + F. (x,t) + H .(x,t)]JI J J J J

.- a rational function of the exponentials {e which

for t > 0 fixed. Thus
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G! (x,t)
(4.3) - (x 452 t) F!(x,t) - F.(x,t) - H!(x,t) - 8a2t F!.(x,t)c. J J J J J J

3

and since L(G!) =0, we have:

(4.4) L[(x-42t)F! (x,t) + F (x,t) + H!. (x,t)] = [8a2t F!J (x,t)]
J J)JJ J

82 F!(x,t)

The function (x-482t) F'(x,t) + F.(x,t) + H .(x,t) has the property that
] J J 3

it is bounded as t + in any moving frame, even j = constant, so we

have found a 'nonresonant' solution for the secular term F!(x,t). For

the secular forcing terms G .(x,t), the growth in the obvious solution is
I

quadratic in t as t + with j fixed and, to the best of our

knowledge, no nonresonant solutions of (4.1) exist. By the absence of

these secular terms, the perturbation we consider is rather special.

In order to study (4.1) when h(x,t) is a linear combination of the

functions listed above, we use the following representation of the N-soliton

solutions of the KdV equation (see Gardner, Greene, Kurskal, and Miura [101,

Tanaka [221, and Deift-Trubowitz [7]):

N
(4.5) q(x,t) =  I a. F. (x,t)

j=l

2
where F.(x,t) is as usual the squared eigenfunction f (x,iej,t). Then,

I + J

using the third order equation satisfied by the squared eigenfunctions [19],

we have:
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N 2
(4.6) q11?' = I a [4(q(x,t) + $)F! + 2q1F.

j=l i I

N2
= 6qq' + 4a.$. F.

2 N 2
qqf t1 = 6q q1 + I 4a.$q F1

j=l j

(5) N2 2 2q =6qq''' + 18 q'q'1 + I [l6a.$.(q+ .)F'.+8a ~qTF]
j 3 3 3 3 3

Thus our particular forcing term h(x,t) is in the span of the functions:

(4.) F(x~),q(x,t)F' (x,t) , q' (x,t)F (x,t) , q 2q' (x,t) , q1 q11

We prove:

Lemma 4.1. Suppose h~x,t) is a linear combination of the functions in

(4.7). Then there exists a solution to the linearized KdV equation (4.1),

Lu =h, which is an N-tuple wave in the following sense:

Mi u(x,t) -~ 0 exponentially fast as jxj - - for t fixed

(ii) u(ct+6,t) -~ 0 exponentially fast as t -~ +-

2
if c 76 4B$. , j =1,.N

(iii) lim u (46 2t+F,t) exists and is an exponentially decreasing

function of

(iv) In fact, u(x,t) is a sum of terms which are either

(a) rational functions in the N-exponentials {exp {$.(x 0 2$%YW

with the same denominator fw(x,t)] 2as q(x,t) or

(b) of the form (x-48 2 t) F! (x,t).
3 3

Proof of Lemma 4.1: As above, we write

(4.8) L(u) -- u t + u x - 6(qu)x
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From [101, Theorem 3.6, F!(x,t) satisfy L(u) 0 and F (x,t) satisfy

the adjoint equation

(4.9) v + v -6qv : 0
t xxx

Thus L(F - 6F. q1 ; L(tF!) Ft Also, L((x-12B t)F3 + F.) = 6q F!.

From the KdV equation, L(q 2 6qq tl - 6q2 q' and L(q'') = 12q'q''. A basis fo-

the solution is therefore given by

2 q2,2

(4.10) {Fi, tF1, (x-126 2t)F!+F., q ,
SJ I

Using L(G!) = 0 and (4.2), an equivalent basis is:
3

F 2(4.11) fF., (x-482t)F3, H), q ,

2
The functions F., q , q' have properties (i)-(iv) of the lemma since

Fj(x,t) is exponentially decreasing. In the Appendix, we show that

(x-482t) F!(x,t) is bounded and satisfies (i)-(iv) and prove that H'(xt)J 1 3

is a rational function of the expontentials which has properties (i)-(iv)

as well. Assuming these results, the lemma is proved.

Remarks: (i) Uniqueness: If we choose the phases of the N-soliton so

that q(-x,-t) = q(x,t) then the solution in Lemma 4 is unique provided

we require:

(a) u(-x,-t) u(x,t)

(b) u(ct+6,t) is bounded for all c as t +

(c) u(ct+6,t) - 0 exponentially fast if c 3 42.2
I

Proof: From the results of Section 3, the kernel of L is spanned by

F1(x,t), G. (x,t) and {(f2 (x, k, t) < k < . The functions F.
Gt x~) volte Cxkb)Ifr - 42

2violate (a); G]xt) violates (b) for c = 46 by stationary phase•2,
analysis, (f2)'(x,k,t) violates (c) for c= -4k 2 (the decay is algebraic,

not exponential). Thus u(x,t) as given in Lemma 4.1 is unique, since

in this case, the functions given in (4.11) satisfy all these conditions.
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(ii) Higher order terms: Even in the time-independent case,

explicit expressions for the higher order terms of the formal expansion

involve more complicated, transcendental functions. For even the second-

order term, functions like

log (1 - tanh x) sech 2x

occur. Thus alqebraic methods will not readily yield solvability results

likc Lemma 4.1 for the higher order terms.
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APPENDIX

In this appendix, we collect certain facts about N-solitonS of the

KdV equation and the associated eigenfunctions f (x,k,t) in this case.
+

These properties are well known ([6], [10], [13], [20], [22]), so we

sketch the proofs for the most part. The functions G (x,t) do not appear

in these papers, so results regarding these eigenfunctions are presented

and proved in full.

With the choice of phases so that q(x,t) = q(-x,-t), the N-soliton

2 2 2
q(x,t) with bound states -a < -< < ... < < 0 where > 0

N N-1 1

it is given explicitly by the following formulae:

Let - x-4B t and define

(cosh if j is odd

(sinh j if j is even

Let w(x,t) WN( .

1 2 ... NIP 2 ... NI

= det

(N-1) (N-l) (N-1)1 2 N

the Wronskian determinant in x of P1,...,1N.

Then

q(x,t) - 2 log w(x,t)
dx

This definition is sensible because w(x,t) > 0 , which we show below.
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Lemma A.l. w(x,t) > 0. In fact, w(x,t) is a sum of exponentials with

positive coefficients.

Proof: w(x,t) = WN1cosh 8 1El , sinh 82E 2

N-1
exp{NEN + (-1) expf NC'N}

2

By the multilinerarity of the determinant, this is the sum over all possible

choices e = + 1 of 2-N WN{exp {1 1 C 1 2 exp {C2 8 2 2}, exp {E 83 3 }

£4 exp {C 4 S 4 E4 i.e. we have upon evaluating the Vandermonde

determinants,

N
(A.2) w(x,t) = 2-N exp I y E£ d} '4 -

all choices Z=[
C. = _ 1
J

T (k8 - 8 ).
j<k k J

Since 0 < a1 <  ,2 < ... <  N ' the number of negative factors in the

product can be found explicitly. Namely, if ci ,,r are the negative
i 1 ir

indices for a given choice of the 's, we obtain (i -1) + ... + (ir -1)

negative factors in "T ( k k - c.8j). The extra factor c 4.. .C2 [n / 2]

jk kk 4 2n2
adds an additional (-1) factor for each i. which is even. For any

J

choice of r and ii,.. .ir this means that there are an even number

of (-l) factors; thus every term in the sum (A.2) has a positive
N

coefficient. We remark that all exponents I c.V.. occur in w(x,t)
j=l j 3j1

and that w(x,t) = w(-x,-t) since changing {ci } {-ci} does not alter
J J

the coefficients in (A.2). This proves Lemma A.l.

The eigenfunctions f (x,k,t) are given explicitly by:

( A .3 ) f ( x , k , t ) - N + I(I ' 2 ' ' ' ' '# N ' e xpi k x + 4 i k 3 t )i+ N
w(x,t) I T (ik - 86)

-=
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The normalization f + exp{ikxi-4ik t} as x +o for t fixed is+

satisfied, as is seen by looking at the leading term, which has exponent
N
I 6 r. (i.e. pick the term with all E 's = + 1 in (A.2) and the
j=l j k

corresponding expansion of the numerator). From the fact ([6], [7]) that
N

T(k) (k+iaj)/(k-i j) , we obtain a similar expression for f (x,k,t)
j=l

using T(k) f_(x,k,t) E f (x,k,t). The proof that f (x,k,t) satisfy the

Schr6dinger equation with potential q(x,t) defined as above is given in

Deift [6]; the basic idea is to use Jacobi's identity for the Wronskians

and induction on N.

From (A.3) and the expression for f (x,k,t), it is easy to see that

f+ (x,iBjt) + (-l)J+lf (x,ijt) - 0 .

Also, from (A.2) and (A.3), it is clear that f +(x,ij,t) decays like

exp {-8jIC as IC - since the exponentials exp {±$j.j} in the

numerator will cancel each other, while remaining in the denominator w(x,t).

The factor is g.(x,t) defined in (3.6) as

(A.4) gj(x,t) I (f (xkt) + (-l)J+if (x,k,t))
j idk - +ki.

Differentiating the exponential exp {ikx+4ik3 t gives a term

2(x-12.t)2 f(x,i',t) , while differentiating the factors (± Z-

J(-2 ~ + ji ,( k

which occur in the (£,N+I) entry in the Wronskian gives terms having
N

the form (cEexp{X(x,t))/(w(x,t)) where X(x,t) +

Z=l
whose sum we denote by h.(x,t). Thus g.(x,t) grows like exp fsjIq}

as ~j and is of the form 2(x-12 2t)f (x,i~jt) + h (x,t) where

h (x,t) is a rational function of the N exponentials exp {BK £} with

denominator w(xt), growing like exp {6jj}. as ,j c'* Since

gj(x,t) ci f+ (x,i8.,t) qg(x,t), multiplying by f+ (x,i8.,t) we haveJ J I J
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G (x,t) 2 2
(A.5) 2 (x-12B t) f+(x,i8.,t) + f +(x,iB,t)h(x, t)

J

- 2(x-126 2t) F (x,t) + H (x,t)

Since f (x,i~jt) is rational with denominator w(x,t) and decays like

exp {-j j} as l.j , Hj(x,t) is rational with denominator

(w(x,t))2 ard is bounded as C - Since all the other exponentials

occur in the numerator with growth at most exp { I 2£I £I} and these

terms are balanced by those in the denominator, H. (x,t) is bounded for

all x,t real. It then follows that Hl(x,t) is a sum of terms

2which decrease exponentially fast as t except in the frames x-482t

= constant, where their limit is an exponentially decreasing function of

the variable x-42 t. Note, however, that for t , H(xt)

"decouples" into N exponentially decreasing bumps moving at the speeds
9

4 B with the same phases as q(x,t) as t ; unlike F.!(x,t), theseJ J

terms give rise to contributions in all N moving frames. These are the

basic properties used in the discussion in Sections 3 and 4 above.
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